Entry Information
Protein Name GapA
Accession No P0A9B2
Protein description Glyceraldehyde 3-phosphate dehydrogenase A
pI/Mw (Da)
Theoretical Experimental
6.58/35401.30 6.93/23085
6.28/36748
6.58/36386
5.93/22606 (DIGE 4.5-6.5)
5.94/36106 (DIGE 4.5-6.5)
5.32/9085 (4.5-5.5)
5.03/10612 (4.5-5.5)
5.74/40430 (5-6)
6.11/34907 (6-11)
Protein function and expression Involved in the pathway of glycolysis. Induced by high pH during anaerobic growth.
Reference(s) Lopez-Campistrous, A., P. Semchuk, L. Burke, T. Palmer-Stone, S. J. Brokx, G. Broderick, D. Bottorff, S. Bolch, J. H. Weiner, and M. J. Ellison. 2005. Localization, annotation & comparison of the Escherichia coli K-12 proteome under two states of growth. Mol. Cell. Proteomics 4:1205-1209. (NCBI)

Pasquali, C., S. Frutiger, M. R. Wilkins, G. J. Hughes, R. D. Appel, A. Bairoch, D. Schaller, J. C. Sanchez, and D. F. Hochstrasser. 1996. Two-dimensional gel electrophoresis of Escherichia coli homogenates: the Escherichia coli SWISS-2DPAGE database. Electrophoresis 17:547-555. (NCBI)

Tonella, L., B. J. Walsh, J. C. Sanchez, K. Ou, M. R. Wilkins, M. Tyler, S. Frutiger, A. A. Gooley, I. Pescaru, R. D. Appel, J. X. Yan, A. Bairoch, C. Hoogland, F. S. Morch, G. J. Hughes, K. L. Williams, and D.F. Hochstrasser. 1998. '98 Escherichia coli SWISS-2DPAGE database update. Electrophoresis 19:1960-1971. (NCBI)

Tonella, L., C. Hoogland, P. A. Binz, R. D. Appel, D. F. Hochstrasser, and J. C. Sanchez. 2001. New perspectives in the Escherichia coli proteome investigation. Proteomics 1:409-423. (NCBI)

Vanbogelen, R. A., K. Z. Abshire, A. Pertsemlidis, R. L. Clark, and F. C. Neidhardt. 1996. Gene-protein database of Escherichia coli K-12, p 2067-2117. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 2nd ed., vol. 1. ASM Press, Washington, D.C. (NCBI)

Yan, J. X., A. T. Devenish, R. Wait, T. Stone, S. Lewis, and S. Fowler. 2002. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics 2:1682-1698. (NCBI)

Yohannes, E., D. M. Barnhart, and J. L. Slonczewski. 2004. pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J. Bacteriol. 186:192-199. (NCBI)

2D gels information
Map ID38
Reference(s)Champion, K. M., J. C. Nishihara, J. C. Joly, and D. Arnott. 2001. Similarity of the Escherichia coli proteome upon completion of different biopharmaceutical fermentation processes. Proteomics 1:1133-1148. (NCBI)
Protein function and expression(s)Map: A
pI/Mw: 6.58/35041

A
2-DE profile of E. coli proteins at the end of anti-CD18 blank run fermentation.
Map ID68
Reference(s)Fountoulakis, M., and R. Gasser. 2003. Proteomic analysis of the cell envelope fraction of Escherichia coli. Amino Acids 24:19-41. (NCBI)
Protein function and expression(s)Map: A A A A A B B B CA
Spot: 10


A
The membrane proteins of the wild type strain.
B
The membrane proteins of the E. coli transformant producing recombinant human cytochrome P450 2E1 and cytochrome P450 reductase
CA
The membrane proteins of E. coli producing human cytochrome P450 2D6 were solubilized with 0.5% sodium cholate. Cholate was exchanged against 7 M urea, 2 M thiourea and 4% CHAPS.
Map ID97
Reference(s)Han, M. -J., K. J. Jeong, J. -S. Yoo, and S. Y. Lee. 2003. Engineering Escherichia coli for increased productivity of serine-rich proteins based on proteome profiling. Appl. Environ. Microbiol. 69:5772-5781. (NCBI)
Protein function and expression(s)Map: B B C C E F F
Spot: 45
Method of identity: Gel match
Protein level ratio (fold changea)
S1: E.coli BL21(DE3) cells at the exponential growth phase
S2: E.coli BL21(DE3) harbouring pEDob5 (containing leptin gene for production) just before induction
S3: E.coli BL21(D16) harbourinor production) 4 h after induction
S4: E.coli BL21(DE3) harbouring pEDob5 (containing leptin gene for production) and pAC104cysK (containing cysK gene) just before induction
S5: E.coli BL21(DE3) harbouring pEDob5 (containing leptin gene for production) and pAC104cysK (ccntaining cycK gene) 4 h after induction

S2/S1: 1.1
S3/S2: 0.49
S4/S2: 1.5
S5/S2: 0.49

B
2D gel of soluble protein fraction of BL21(DE3) (pEDob5), which overproduces leptin, before induction.
C
2D gel of soluble protein fraction of BL21(DE3) (pEDob5), which overproduces leptin, 9h after induction.
E
2D gel of soluble protein fraction of BL21(DE3) (pEDob5 and pACYC104CysK), which overproduces leptin and CysK, before induction.
F
2D gel of soluble protein fraction of BL21(DE3) (pEDob5 and pACYC104CysK), which overproduces leptin, 2h after induction.
Map ID231
Reference(s)Peng, L., and K. Shimizu. 2003. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl. Microbiol. Biotechnol. 61:163-178. (NCBI)
Protein function and expression(s)Map: A B C D E


A
52 identified protein in the following conditions: carbon source as glucose under aerobic conditions.
B
52 identified protein in the following conditions: carbon source as glucose under microaerobic conditions.
C
52 identified protein in the following conditions: carbon source as acetate under aerobic conditions.
D
52 identified protein in the following conditions: carbon source as gluconate under aerobic conditions.
E
52 identified protein in the following conditions: carbon source as glycerol under aerobic conditions.
Map ID323
Reference(s)Yohannes, E., D. M. Barnhart, and J. L. Slonczewski. 2004. pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J. Bacteriol. 186:192-199. (NCBI)
Protein function and expression(s)Map: A B
Spot: 29
Base induced
LDE(the mean logarithmic differential expression ratio of pH 8.5 cultures to pH 5.5 cultures)
A: 0.44, B:0.03

A
pH-dependent protein profiles after anaerobic growth. In the layered view shown two composite images, one representing growth at pH 8.5 (pink) and one representing growth at pH 5.5 (green), are superimposed. Cultures grown in LBK buffered with 100 mM MES (pH 5.5) or 100 mM TAPS (pH 8.5).
B
pH-dependent protein profiles after anaerobic growth. In the layered view shown two composite images, one representing growth at pH 8.5 (pink) and one representing growth at pH 5.5 (green), are superimposed. Cultures grown in LBK buffered with a mixture of 50 mM MES and 50 mM1TAPS for both pH 5.5 and pH 8.5.
Map ID325
Reference(s)Yoon, S. H., M. -J. Han, S. Y. Lee, K. J. Jeong, and J. -S. Yoo. 2003. Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol. Bioeng. 81:753-767. (NCBI)
Protein function and expression(s)Map: A B C D E F G


A
Two-dimensional protein expression map. Protens that identified by MALDI-TOF MS are labeled with red, and those identified by E. coli SWISS-2DPAGE are labeled with blue. E. coli W3110 0.88 g DCW/L.
B
Two-dimensional protein expression map. Protens that identified by MALDI-TOF MS are labeled with red, and those identified by E. coli SWISS-2DPAGE are labeled with blue. E. coli W3110 3.5 g DCW/L.
C
Two-dimensional protein expression map. Protens that identified by MALDI-TOF MS are labeled with red, and those identified by E. coli SWISS-2DPAGE are labeled with blue. E. coli W3110 12.7 g DCW/L.
D
Two-dimensional protein expression map. Protens that identified by MALDI-TOF MS are labeled with red, and those identified by E. coli SWISS-2DPAGE are labeled with blue. E. coli W3110 40 g DCW/L.
E
Two-dimensional protein expression map. Protens that identified by MALDI-TOF MS are labeled with red, and those identified by E. coli SWISS-2DPAGE are labeled with blue. E. coli W3110 62 g DCW/L.
F
Two-dimensional protein expression map. Protens that identified by MALDI-TOF MS are labeled with red, and those identified by E. coli SWISS-2DPAGE are labeled with blue. E. coli W3110 72 g DCW/L.
G
Two-dimensional protein expression map. Protens that identified by MALDI-TOF MS are labeled with red, and those identified by E. coli SWISS-2DPAGE are labeled with blue. E. coli W3110 74 g DCW/L.
Swiss-Prot Database Reference

Entry information
Entry Name G3P1_ECOLI
Primary accession number P0A9B2
Secondary accession numbers P06977 
Integrated into Swiss-Prot on 1988-04-01
Sequence was last modified on 2005-07-19 (Sequence version 1)
Annotations were last modified on 2006-09-05 (Entry version 17)
Name and origin of the protein
Protein name Glyceraldehyde-3-phosphate dehydrogenase A
Synonyms EC 1.2.1.12 Glyceraldehyde-3-phosphate dehydrogenase A
GAPDH-A
Gene name Name : gapA
OrderedLocusName : b1779
From Escherichia coli [TaxID:562] [HAMAP proteome]
Taxonomy Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Escherichia;
References
[1] NUCLEOTIDE SEQUENCE [GENOMIC DNA].PubMed=2990926[NCBI, ExPASy, EBI, Israel, Japan]
Branlant G. , Branlant C. ,
"Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behavior of the NAD+-binding domain and of the catalytic domain of D-glyceraldehyde-3-phosphate dehydrogenase."
Eur. J. Biochem.150:61-66(1985) 
[2] SEQUENCE REVISION TO 294-299.
Nelson K. ,
Submitted (1990-09) to the EMBL/GenBank/DDBJ databases 
[3] NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
strain = K12 / W3110 / ATCC 27325 / DSM 5911
DOI=10.1093/dnares/3.6.363;PubMed=9097039[NCBI, ExPASy, EBI, Israel, Japan]
Aiba H. , Baba T. , Fujita K. , Hayashi K. , Inada T. , Isono K. , Itoh T. , Kasai H. , Kashimoto K. , Kimura S. , Kitakawa M. , Kitagawa M. , Makino K. , Miki T. , Mizobuchi K. , Mori H. , Mori T. , Motomura K. , Nakade S. , Nakamura Y. , Nashimoto H. , Nishio Y. , Oshima T. , Saito N. , Sampei G. , Seki Y. , Sivasundaram S. , Tagami H. , Takeda J. , Takemoto K. , Takeuchi Y. , Wada C. , Yamamoto Y. , Horiuchi T. ,
"A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map."
DNA Res.3:363-377(1996) 
[4] NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
strain = K12 / MG1655 / ATCC 47076
DOI=10.1126/science.277.5331.1453;PubMed=9278503[NCBI, ExPASy, EBI, Israel, Japan]
Blattner F.R. , Plunkett G. III , Bloch C.A. , Perna N.T. , Burland V. , Riley M. , Collado-Vides J. , Glasner J.D. , Rode C.K. , Mayhew G.F. , Gregor J. , Davis N.W. , Kirkpatrick H.A. , Goeden M.A. , Rose D.J. , Mau B. , Shao Y. ,
"The complete genome sequence of Escherichia coli K-12."
Science277:1453-1474(1997) 
[5] NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
strain = K12 / W3110 / ATCC 27325 / DSM 5911
DOI=10.1038/msb4100049;
Hayashi K. , Morooka N. , Yamamoto Y. , Fujita K. , Isono K. , Choi S. , Ohtsubo E. , Baba T. , Wanner B.L. , Mori H. , Horiuchi T. ,
"Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110."
Mol. Syst. Biol.2:E1-E5(2006) 
[6] PROTEIN SEQUENCE OF 1-12.
strain = K12 / W3110 / ATCC 27325 / DSM 5911

Pasquali C. , Sanchez J.-C. , Ravier F. , Golaz O. , Hughes G.J. , Frutiger S. , Paquet N. , Wilkins M. , Appel R.D. , Bairoch A. , Hochstrasser D.F. ,
Submitted (1994-09) to the Swiss-Prot 
[7] PROTEIN SEQUENCE OF 1-12.
strain = K12 / EMG2
PubMed=9298646[NCBI, ExPASy, EBI, Israel, Japan]
Link A.J. , Robison K. , Church G.M. ,
"Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12."
Electrophoresis18:1259-1313(1997) 
[8] NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 6-313.
strain = A8190
strain = E2666-74
strain = E3406
strain = E830587
strain = E851819
strain = ECOR 14
strain = ECOR 32
strain = ECOR 40
strain = ECOR 52
strain = ECOR 58
strain = ECOR 64
strain = ECOR 70
PubMed=1862091[NCBI, ExPASy, EBI, Israel, Japan]
Nelson K. , Whittam T.S. , Selander R.K. ,
"Nucleotide polymorphism and evolution in the glyceraldehyde-3-phosphate dehydrogenase gene (gapA) in natural populations of Salmonella and Escherichia coli."
Proc. Natl. Acad. Sci. U.S.A.88:6667-6671(1991) 
[9] NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 9-320.
strain = ECOR 10
strain = ECOR 16
strain = ECOR 38
strain = ECOR 39
strain = ECOR 4
strain = ECOR 40
strain = ECOR 49
strain = ECOR 65
strain = ECOR 68
strain = ECOR 8
strain = O2:HN / ECOR 50 / P97 / UPEC
PubMed=7896119[NCBI, ExPASy, EBI, Israel, Japan]
Guttman D.S. , Dykhuizen D.E. ,
"Detecting selective sweeps in naturally occurring Escherichia coli."
Genetics138:993-1003(1994) 
[10] GENE TRANSFER DISCUSSION.PubMed=2124629[NCBI, ExPASy, EBI, Israel, Japan]
Doolittle R.F. , Feng D.F. , Anderson K.L. , Alberro M.R. ,
"A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote."
J. Mol. Evol.31:383-388(1990) 
[11] MUTAGENESIS OF HIS-176.DOI=10.1021/bi00432a036;PubMed=2659073[NCBI, ExPASy, EBI, Israel, Japan]
Soukri A. , Mougin A. , Corbier C. , Wonacott A. , Branlant C. , Branlant G. ,
"Role of the histidine 176 residue in glyceraldehyde-3-phosphate dehydrogenase as probed by site-directed mutagenesis."
Biochemistry28:2586-2592(1989) 
[12] X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS).DOI=10.1006/jmbi.1996.0204;PubMed=8636984[NCBI, ExPASy, EBI, Israel, Japan]
Duee E. , Olivier-Deyris L. , Fanchon E. , Corbier C. , Branlant G. , Dideberg O. ,
"Comparison of the structures of wild-type and a N313T mutant of Escherichia coli glyceraldehyde 3-phosphate dehydrogenases: implication for NAD binding and cooperativity."
J. Mol. Biol.257:814-838(1996) 
[13] X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) IN COMPLEX WITH NAD AND GLYCERALDEHYDE 3-PHOSPHATE, AND SUBUNIT.DOI=10.1021/bi9927080;PubMed=10978154[NCBI, ExPASy, EBI, Israel, Japan]
Yun M. , Park C.-G. , Kim J.-Y. , Park H.-W. ,
"Structural analysis of glyceraldehyde 3-phosphate dehydrogenase from Escherichia coli: direct evidence of substrate binding and cofactor-induced conformational changes."
Biochemistry39:10702-10710(2000) 
Comments
  • CATALYTIC ACTIVITY : D-glyceraldehyde 3-phosphate + phosphate + NAD(+) = 3-phospho-D-glyceroyl phosphate + NADH
  • PATHWAY : Carbohydrate degradation; glycolysis; pyruvate from D-glyceraldehyde 3-phosphate: step 1
  • SUBUNIT : Homotetramer
  • INTERACTION:
        P0A9H9:cheZ; NbExp=1; InAct=EBI-368904, EBI-546726
  • SUBCELLULAR LOCATION : Cytoplasm
  • SIMILARITY : Belongs to the glyceraldehyde-3-phosphate dehydrogenase family
  • Copyright
    Copyrighted by the UniProt Consortium, see http://www.uniprot.org/. Distributed under the Creative Commons Attribution-NoDerivs License.
    Cross-reference
    Sequence databases
    EMBL X02662;CAA26498.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    U00096;AAC74849.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    AP009048;BAA15576.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    M66870;AAA23838.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    M66871;AAA23839.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    M66872;AAA02930.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    M66873;AAA23840.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    M66874;AAA23841.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    M66875;AAA23842.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    M66876;AAA23843.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    M66877;AAA23844.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    M66878;AAA23845.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    M66879;AAA23846.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    M66880;AAA23847.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    M66881;AAA23848.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    M66882;AAA23849.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    U07750;AAC43271.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    U07751;AAC43272.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    U07752;AAC43273.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    U07754;AAC43274.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    U07765;AAC43284.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    U07768;AAC43285.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    U07769;AAC43286.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    U07770;AAC43287.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    U07771;AAC43288.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    U07772;AAC43289.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    U07773;AAC43290.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    PIR A25209;DEECG3.
    3D structure databases
    PDB 1DC3;X-ray;A/B=1-330[ExPASy/RCSB/EBI].
    1DC4;X-ray;A/B=1-330[ExPASy/RCSB/EBI].
    1DC5;X-ray;A/B=1-330[ExPASy/RCSB/EBI].
    1DC6;X-ray;A/B=1-330[ExPASy/RCSB/EBI].
    1GAD;X-ray;O/P=1-330[ExPASy/RCSB/EBI].
    1GAE;X-ray;O/P=1-330[ExPASy/RCSB/EBI].
    1S7C;X-ray;A=1-330[ExPASy/RCSB/EBI].
    Detailed list of linked structures
    ModBase P0A9B2
    Protein-protein interaction databases
    IntAct P0A9B2;-.
    DIP P0A9B2
    Enzyme and pathway databases
    BioCyc EcoCyc:GAPDH-A-MONOMER;-.
    2D gel databases
    SWISS-2DPAGE P0A9B2;COLI.
    Organism-specific gene databases
    EchoBASE EB0362;-.
    ECO2DBASE H034.3;6TH EDITION.
    I033.5;6TH EDITION.
    EcoGene EG10367;gapA.
    HOGENOM [Family / Alignment / Tree]
    Family and domain databases
    InterPro IPR000173;GAP_DH.
    IPR006424;GAPDH_I.
    IPR011596;GAPDH_like.
    Graphical view of domain structure
    PANTHER PTHR10836;GAP_dhdrogenase;1.
    Pfam PF02800;Gp_dh_C;1.
    PF00044;Gp_dh_N;1.
    Pfam graphical view of domain structure
    PRINTS PR00078;G3PDHDRGNASE.
    ProDom PD007761;GAPDH_like;1.
    [Domain structure / List of seq. sharing at least 1 domain]
    TIGRFAMs TIGR01534;GAPDH-I;1.
    BLOCKS P0A9B2
    PROSITE PS00071;GAPDH;1.
    Genome annotation databases
    GenomeReviews U00096_GR;b1779.
    Ontology
    GO GO:0005515;Molecular Function:protein binding(inferred from physical interaction)
    QuickGo View.
    Other
    LinkHub P0A9B2;-.
    ProtoNet P0A9B2
    UniRef View cluster of proteins with at least 50% / 90% / 100% identity
    Keyword
    3D-structure; Complete proteome; Direct protein sequencing; Glycolysis; NAD; Oxidoreductase;
    Features
    Feature table viewer Feature aligner
    Key  From   To Length  Description  FTId
    INIT_MET    0     0      
    CHAIN    1   330    330  Glyceraldehyde-3-phosphate dehydrogenase A  PRO_0000145648
    NP_BIND   11    12      2  NAD(by similarity)  
    REGION  148   150      3  Glyceraldehyde 3-phosphate binding  
    REGION  208   209      2  Glyceraldehyde 3-phosphate binding  
    ACT_SITE  149   149    Nucleophile  
    BINDING   33    33    NAD  
    BINDING   77    77    NAD; via carbonyl oxygen  
    BINDING  179   179    Glyceraldehyde 3-phosphate  
    BINDING  231   231    Glyceraldehyde 3-phosphate  
    BINDING  313   313    NAD  
    SITE  176   176    Activates thiol group during catalysis  
    VARIANT   42    42    Y -> I: (in strain: ECOR 70)  
    VARIANT  265   265    G -> D: (in strain: E830587)  
    VARIANT  266   266    E -> A: (in strain: E2666-74)  
    MUTAGEN  176   176    H -> N: Reduces activity about 50-fold  
    STRAND    2     7      6    
    HELIX   11    21     11    
    TURN   22    22      1    
    STRAND   26    32      7    
    HELIX   37    45      9    
    TURN   48    50      3    
    STRAND   57    60      4    
    TURN   61    62      2    
    STRAND   63    66      4    
    TURN   67    68      2    
    STRAND   69    74      6    
    HELIX   79    81      3    
    HELIX   84    87      4    
    TURN   88    88      1    
    STRAND   91    94      4    
    HELIX  102   110      9    
    TURN  111   112      2    
    STRAND  115   118      4    
    STRAND  128   128      1    
    TURN  131   133      3    
    TURN  136   137      2    
    STRAND  143   145      3    
    HELIX  149   165     17    
    STRAND  167   177     11    
    TURN  180   181      2    
    STRAND  183   183      1    
    TURN  190   191      2    
    HELIX  194   196      3    
    STRAND  198   198      1    
    TURN  199   201      3    
    STRAND  204   207      4    
    HELIX  210   217      8    
    HELIX  219   221      3    
    TURN  222   224      3    
    STRAND  225   232      8    
    STRAND  238   246      9    
    HELIX  252   264     13    
    TURN  265   270      6    
    STRAND  271   274      4    
    HELIX  280   283      4    
    TURN  284   285      2    
    STRAND  290   293      4    
    TURN  294   296      3    
    STRAND  298   301      4    
    TURN  302   303      2    
    STRAND  304   311      8    
    TURN  313   314      2    
    HELIX  315   327     13    
    TURN  328   330      3    
    Sequence information
    Length: 330AA [This is the length of the unprocessed precursor] Molecular weight: 35401Da [This is the MW of the unprocessed precursor] CRC64: 82CE2499B0D23EB4[This is a checksum on the sequence]
            10         20         30         40         50         60
    TIKVGINGFG RIGRIVFRAA QKRSDIEIVA INDLLDADYM AYMLKYDSTH GRFDGTVEVK
            70         80         90        100        110        120
    DGHLIVNGKK IRVTAERDPA NLKWDEVGVD VVAEATGLFL TDETARKHIT AGAKKVVMTG
           130        140        150        160        170        180
    PSKDNTPMFV KGANFDKYAG QDIVSNASCT TNCLAPLAKV INDNFGIIEG LMTTVHATTA
           190        200        210        220        230        240
    TQKTVDGPSH KDWRGGRGAS QNIIPSSTGA AKAVGKVLPE LNGKLTGMAF RVPTPNVSVV
           250        260        270        280        290        300
    DLTVRLEKAA TYEQIKAAVK AAAEGEMKGV LGYTEDDVVS TDFNGEVCTS VFDAKAGIAL
           310        320        330 
    NDNFVKLVSW YDNETGYSNK VLDLIAHISK 
    P0A9B2 in FASTA format