Entry Information
Protein Name GlmU
Accession No P0ACC7
Protein description Bifunctional GlmU protein
pI/Mw (Da)
Theoretical Experimental
6.09/49190.08
Protein function and expression Responsible for the acetylation of glucosamine 1-phosphate (Glc-N-1-P) to give N-acetylglucosamine 1-phosphate (GlcNAc-1-P) and the synthesis of UDP-GlcNAc.
Reference(s) Lopez-Campistrous, A., P. Semchuk, L. Burke, T. Palmer-Stone, S. J. Brokx, G. Broderick, D. Bottorff, S. Bolch, J. H. Weiner, and M. J. Ellison. 2005. Localization, annotation & comparison of the Escherichia coli K-12 proteome under two states of growth. Mol. Cell. Proteomics 4:1205-1209. (NCBI)

2D gels information
Map ID37
Reference(s)Champion, K. M., J. C. Nishihara, I. S. Aldor, G. T. Moreno, D. Andersen, K. L. Stults, and M. Vanderlaan. 2003. Comparison of the Escherichia coli proteomes for recombinant human growth hormone producing and nonproducing fermentations. Proteomics 3:1365-1373. (NCBI)
Protein function and expression(s)Map: B B B
Sequence coverage (%): 68
Quantitative changes: Higher level in blank

B
2-DE analysis of E. coli proteins from Nutropin blank fermentation.
Swiss-Prot Database Reference

Entry information
Entry Name GLMU_ECOLI
Primary accession number P0ACC7
Secondary accession numbers P17114 P76746 Q2M848 
Integrated into Swiss-Prot on 2005-11-08
Sequence was last modified on 2005-11-08 (Sequence version 1)
Annotations were last modified on 2006-07-25 (Entry version 14)
Name and origin of the protein
Protein name Bifunctional protein glmU
Synonyms Bifunctional protein glmU
Includes UDP-N-acetylglucosamine pyrophosphorylase
  EC 2.7.7.23  (N-acetylglucosamine-1-phosphate uridyltransferase)

Glucosamine-1-phosphate N-acetyltransferase
  EC 2.3.1.157
Gene name Name : glmU
OrderedLocusName : b3730
From Escherichia coli [TaxID:562] [HAMAP proteome]
Taxonomy Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Escherichia;
References
[1] NUCLEOTIDE SEQUENCE [GENOMIC DNA].PubMed=6395859[NCBI, ExPASy, EBI, Israel, Japan]
Walker J.E. , Gay N.J. , Saraste M. , Eberle A.N. ,
"DNA sequence around the Escherichia coli unc operon. Completion of the sequence of a 17 kilobase segment containing asnA, oriC, unc, glmS and phoS."
Biochem. J.224:799-815(1984) 
[2] NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
strain = K12 / MG1655 / ATCC 47076
PubMed=7686882[NCBI, ExPASy, EBI, Israel, Japan]
Burland V.D. , Plunkett G. III , Daniels D.L. , Blattner F.R. ,
"DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication."
Genomics16:551-561(1993) 
[3] NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA], AND SEQUENCE REVISION.
strain = K12 / MG1655 / ATCC 47076
DOI=10.1126/science.277.5331.1453;PubMed=9278503[NCBI, ExPASy, EBI, Israel, Japan]
Blattner F.R. , Plunkett G. III , Bloch C.A. , Perna N.T. , Burland V. , Riley M. , Collado-Vides J. , Glasner J.D. , Rode C.K. , Mayhew G.F. , Gregor J. , Davis N.W. , Kirkpatrick H.A. , Goeden M.A. , Rose D.J. , Mau B. , Shao Y. ,
"The complete genome sequence of Escherichia coli K-12."
Science277:1453-1474(1997) 
[4] NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
strain = K12 / W3110 / ATCC 27325 / DSM 5911
DOI=10.1038/msb4100049;
Hayashi K. , Morooka N. , Yamamoto Y. , Fujita K. , Isono K. , Choi S. , Ohtsubo E. , Baba T. , Wanner B.L. , Mori H. , Horiuchi T. ,
"Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110."
Mol. Syst. Biol.2:E1-E5(2006) 
[5] IDENTIFICATION.PubMed=8407787[NCBI, ExPASy, EBI, Israel, Japan]
Mengin-Lecreulx D. , van Heijenoort J. ,
"Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli."
J. Bacteriol.175:6150-6157(1993) 
[6] CHARACTERIZATION.PubMed=8083170[NCBI, ExPASy, EBI, Israel, Japan]
Mengin-Lecreulx D. , van Heijenoort J. ,
"Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis."
J. Bacteriol.176:5788-5795(1994) 
[7] CHARACTERIZATION.DOI=10.1021/bi952275a;PubMed=8555230[NCBI, ExPASy, EBI, Israel, Japan]
Gehring A.M. , Lees W.J. , Mindiola D.J. , Walsh C.T. , Brown E.D. ,
"Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli."
Biochemistry35:579-585(1996) 
[8] MUTAGENESIS OF CYS-296; CYS-307; CYS-324 AND CYS-385, AND BIOPHYSICOCHEMICAL PROPERTIES.PubMed=9733680[NCBI, ExPASy, EBI, Israel, Japan]
Pompeo F. , van Heijenoort J. , Mengin-Lecreulx D. ,
"Probing the role of cysteine residues in glucosamine-1-phosphate acetyltransferase activity of the bifunctional protein glmU from Escherichia coli: site-directed mutagenesis and characterization of the mutant enzymes."
J. Bacteriol.180:4799-4803(1998) 
[9] X-RAY CRYSTALLOGRAPHY (2.25 ANGSTROMS) OF THE TRUNCATED FORM AND IN COMPLEX WITH UDP-GLCNAC, AND MUTAGENESIS OF GLY-14; ARG-18 AND LYS-25.DOI=10.1093/emboj/18.15.4096;PubMed=10428949[NCBI, ExPASy, EBI, Israel, Japan]
Brown K. , Pompeo F. , Dixon S. , Mengin-Lecreulx D. , Cambillau C. , Bourne Y. ,
"Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily."
EMBO J.18:4096-4107(1999) 
[10] X-RAY CRYSTALLOGRAPHY (2.1 ANGSTROMS) IN COMPLEX WITH UDP-GLCNAC AND COA, COFACTOR, AND SUBUNIT.DOI=10.1021/bi002503n;PubMed=11329257[NCBI, ExPASy, EBI, Israel, Japan]
Olsen L.R. , Roderick S.L. ,
"Structure of the Escherichia coli glmU pyrophosphorylase and acetyltransferase active sites."
Biochemistry40:1913-1921(2001) 
Comments
  • FUNCTION : Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-GlcNAc. Responsible for the acetylation of Glc-N-1-P to give GlcNAc-1-P and for the uridyl transfer from UTP to GlcNAc-1-P which produces UDP-GlcNAc
  • CATALYTIC ACTIVITY : Acetyl-CoA + alpha-D-glucosamine 1-phosphate = CoA + N-acetyl-alpha-D-glucosamine 1-phosphate
  • CATALYTIC ACTIVITY : UTP + N-acetyl-alpha-D-glucosamine 1-phosphate = diphosphate + UDP-N-acetyl-D-glucosamine
  • COFACTOR : Binds 1 magnesium ion per subunit. Can also use cobalt ions to a lesser extent
  • BIOPHYSICOCHEMICAL PROPERTIES:
    Kinetic parameters:
    KM=0.15 mM for alpha-D-glucosamine 1-phosphate
    KM=0.6 mM for acetyl-CoA
  • PATHWAY : Peptidoglycan biosynthesis; lipopolysaccharide biosynthesis (lipid A biosynthesis); UDP-N-acetylglucosamine from fructose-6-P: step 3
  • PATHWAY : Peptidoglycan biosynthesis; lipopolysaccharide biosynthesis (lipid A biosynthesis); UDP-N-acetylglucosamine from fructose-6-P: step 4
  • SUBUNIT : Homotrimer. In vivo forms an hexameric aggregate
  • INTERACTION:
        P0A7V0:rpsB; NbExp=1; InAct=EBI-370256, EBI-543439
  • SUBCELLULAR LOCATION : Cytoplasm
  • SIMILARITY : In the N-terminal section; belongs to the N-acetylglucosamine-1-phosphate uridyltransferase family
  • SIMILARITY : In the C-terminal section; belongs to the transferase hexapeptide repeat family
  • CAUTION : Ref.2 sequence differs from that shown due to a frameshift that creates two ORFs
  • Copyright
    Copyrighted by the UniProt Consortium, see http://www.uniprot.org/. Distributed under the Creative Commons Attribution-NoDerivs License.
    Cross-reference
    Sequence databases
    EMBL X01631;CAA25784.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    L10328;AAA62082.1;ALT_FRAME;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    L10328;AAA62081.1;ALT_FRAME;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    U00096;AAC76753.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    AP009048;BAE77558.1;-;Genomic_DNA [EMBL/GenBank/DDBJ][CoDingSequence].
    PIR C65176;C65176.
    3D structure databases
    PDB 1FWY;X-ray;A/B=1-331[ExPASy/RCSB/EBI].
    1FXJ;X-ray;A/B=1-331[ExPASy/RCSB/EBI].
    1HV9;X-ray;A/B=1-456[ExPASy/RCSB/EBI].
    Detailed list of linked structures
    ModBase P0ACC7
    Protein-protein interaction databases
    IntAct P0ACC7;-.
    DIP P0ACC7
    Enzyme and pathway databases
    BioCyc EcoCyc:NAG1P-URIDYLTRANS-MONOMER;-.
    2D gel databases
    SWISS-2DPAGE Get region on 2D PAGE
    Organism-specific gene databases
    EchoBASE EB1184;-.
    EcoGene EG11198;glmU.
    HOGENOM [Family / Alignment / Tree]
    Family and domain databases
    HAMAP MF_01631-;1.
    PBIL [Family/Alignment/Tree]
    InterPro IPR005882;GlmU.
    IPR001451;Hexapep_transf.
    IPR005835;NTP_transferase.
    IPR011004;Trimer_LpxA_like.
    Graphical view of domain structure
    Pfam PF00132;Hexapep;7.
    PF00483;NTP_transferase;1.
    Pfam graphical view of domain structure
    TIGRFAMs TIGR01173;glmU;1.
    BLOCKS P0ACC7
    PROSITE PS00101;HEXAPEP_TRANSFERASES;1.
    Genome annotation databases
    GenomeReviews U00096_GR;b3730.
    Ontology
    GO GO:0005515;Molecular Function:protein binding(inferred from physical interaction)
    QuickGo View.
    Other
    ProtoNet P0ACC7
    UniRef View cluster of proteins with at least 50% / 90% / 100% identity
    Keyword
    3D-structure; Acyltransferase; Cell shape; Cell wall; Cobalt; Complete proteome; Magnesium; Metal-binding; Multifunctional enzyme; Nucleotidyltransferase; Peptidoglycan synthesis; Repeat; Transferase;
    Features
    Feature table viewer Feature aligner
    Key  From   To Length  Description  FTId
    CHAIN    1   456    456  Bifunctional protein glmU  PRO_0000068701
    REGION    1   229    229  Pyrophosphorylase  
    REGION   11    14      4  Substrate(by similarity)  
    REGION   81    82      2  Substrate(by similarity)  
    REGION  230   250     21  Linker  
    REGION  251   456    206  N-acetyltransferase  
    ACT_SITE  363   363    Proton acceptor(by similarity)  
    METAL  105   105    Magnesium  
    METAL  227   227    Magnesium  
    BINDING   76    76    Substrate  
    BINDING  103   103    Substrate  
    BINDING  140   140    Substrate(by similarity)  
    BINDING  154   154    Substrate  
    BINDING  169   169    Substrate  
    BINDING  387   387    Acetyl-CoA(by similarity)  
    BINDING  405   405    Acetyl-CoA  
    BINDING  423   423    Acetyl-CoA; via amide nitrogen  
    BINDING  440   440    Acetyl-CoA  
    MUTAGEN   14    14    G -> A: 8-fold decrease in uridyltransferase activity. Creates steric conflict and decreases affinity for UTP  
    MUTAGEN   18    18    R -> A: Dramatically impairs the uridyltransferase activity  
    MUTAGEN   25    25    K -> A: 8-fold decrease in uridyltransferase activity  
    MUTAGEN  296   296    C -> A: No effect  
    MUTAGEN  307   307    C -> A: 1350-fold decrease in acetyltransferase activity  
    MUTAGEN  324   324    C -> A: 8-fold decrease in acetyltransferase activity  
    MUTAGEN  385   385    C -> A: No effect  
    CONFLICT  186   187    KL -> NV: (in Ref. 1)  
    STRAND    6    11      6    
    HELIX   17    19      3    
    HELIX   25    27      3    
    STRAND   29    30      2    
    TURN   31    32      2    
    STRAND   33    34      2    
    HELIX   35    43      9    
    TURN   44    47      4    
    STRAND   51    55      5    
    TURN   57    58      2    
    HELIX   59    65      7    
    TURN   69    70      2    
    STRAND   72    75      4    
    HELIX   82    89      8    
    HELIX   90    92      3    
    TURN   95    96      2    
    STRAND   98   103      6    
    TURN  104   105      2    
    TURN  107   108      2    
    HELIX  111   120     10    
    TURN  123   124      2    
    STRAND  126   132      7    
    TURN  137   138      2    
    STRAND  141   145      5    
    TURN  146   147      2    
    STRAND  148   153      6    
    TURN  155   157      3    
    TURN  160   161      2    
    HELIX  162   164      3    
    STRAND  167   176     10    
    HELIX  177   185      9    
    TURN  186   186      1    
    HELIX  198   200      3    
    HELIX  201   207      7    
    TURN  208   209      2    
    STRAND  212   215      4    
    HELIX  221   223      3    
    HELIX  229   249     21    
    TURN  250   251      2    
    STRAND  253   254      2    
    HELIX  257   259      3    
    STRAND  260   267      8    
    STRAND  273   274      2    
    STRAND  278   286      9    
    TURN  288   289      2    
    STRAND  291   292      2    
    TURN  294   295      2    
    STRAND  297   299      3    
    STRAND  302   303      2    
    TURN  305   306      2    
    STRAND  308   309      2    
    STRAND  314   316      3    
    STRAND  319   320      2    
    TURN  322   323      2    
    STRAND  325   326      2    
    STRAND  330   332      3    
    TURN  334   335      2    
    STRAND  337   338      2    
    TURN  340   341      2    
    STRAND  343   355     13    
    TURN  357   358      2    
    STRAND  360   372     13    
    TURN  374   375      2    
    STRAND  377   378      2    
    TURN  380   381      2    
    STRAND  383   385      3    
    STRAND  387   387      1    
    STRAND  392   392      1    
    STRAND  395   397      3    
    TURN  399   400      2    
    STRAND  402   403      2    
    TURN  405   406      2    
    STRAND  408   410      3    
    STRAND  413   415      3    
    TURN  417   418      2    
    STRAND  420   421      2    
    TURN  423   424      2    
    STRAND  426   427      2    
    STRAND  431   431      1    
    TURN  433   434      2    
    STRAND  436   437      2    
    TURN  447   448      2    
    Sequence information
    Length: 456AA [This is the length of the unprocessed precursor] Molecular weight: 49190Da [This is the MW of the unprocessed precursor] CRC64: 2F3C5C84F673C8A3[This is a checksum on the sequence]
            10         20         30         40         50         60
    MLNNAMSVVI LAAGKGTRMY SDLPKVLHTL AGKAMVQHVI DAANELGAAH VHLVYGHGGD
            70         80         90        100        110        120
    LLKQALKDDN LNWVLQAEQL GTGHAMQQAA PFFADDEDIL MLYGDVPLIS VETLQRLRDA
           130        140        150        160        170        180
    KPQGGIGLLT VKLDDPTGYG RITRENGKVT GIVEHKDATD EQRQIQEINT GILIANGADM
           190        200        210        220        230        240
    KRWLAKLTNN NAQGEYYITD IIALAYQEGR EIVAVHPQRL SEVEGVNNRL QLSRLERVYQ
           250        260        270        280        290        300
    SEQAEKLLLA GVMLRDPARF DLRGTLTHGR DVEIDTNVII EGNVTLGHRV KIGTGCVIKN
           310        320        330        340        350        360
    SVIGDDCEIS PYTVVEDANL AAACTIGPFA RLRPGAELLE GAHVGNFVEM KKARLGKGSK
           370        380        390        400        410        420
    AGHLTYLGDA EIGDNVNIGA GTITCNYDGA NKFKTIIGDD VFVGSDTQLV APVTVGKGAT
           430        440        450 
    IAAGTTVTRN VGENALAISR VPQTQKEGWR RPVKKK
    P0ACC7 in FASTA format